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Heterogeneous condensation in dense media
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A theoretical description of heterogeneous nucleation kinetics is presented. This description takes into
account the perturbation of the vapor phase initiated by the growing droplets. The form of the density profile
around the growing droplet is analyzed and some special approximations are given. Then the process of
nucleation in the whole system is described. As a result all the main characteristics of the process are deter-
mined analytically.
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I. INTRODUCTION

Among the numerous examples of first order phase tr
sitions the case of condensation stands out because o
relative simplicity. This case is well investigated experime
tally and is traditionally regarded as the base for applicat
of new theoretical methods. The classical theory of cond
sation~see, for example,@1#! gives solid ground for further
theoretical constructions. Numerous modifications and
considerations~see, for example,@2#! allow one to consider
that the case of condensation is well analyzed both theo
cally and experimentally.

One cannot state that all problems in the derivation of
stationary nucleation rate are completely solved, but
nucleation rate dependence on supersaturation is reliab
least in its general features. Certainly, there exist some
known factors involved in the smooth dependence on
parameters of external conditions, but they are not very
portant in the current consideration.

One has to stress that essentially all investigations so
were intended to determine the rate of nucleation and h
not presented the global picture of the phase transition. T
oretical descriptions of the global evolution appeared la
than the classical theory of nucleation and they were no
numerous as those intended to get the stationary nuclea
rate. One can extract many aspects of the global pictur
the phase transition. When there is a sufficient quantity
aerosol in the system~i.e., there are already existing drople
formed on impurities! the evolution description does not re
quire the process of droplet formation to be taken into
count. This radically simplifies the problem, and this ca
was investigated in@3#. The total number of droplets there
already known from external conditions. Here this value w
be the matter of investigation.

We shall determine the number of droplets and their s
spectrum by solving the complex nonlinear problem. B
cause of the difficulties of this problem, only some numeri
calculations have been presented earlier@4,5#. The scheme of
calculations presented in@5# allowed the authors to establis
in @4# some dimensionless combinations which essenti
simplify the numerical procedure used there and allow rat
complex numerical calculations. The sectional model p
sented in@6# simplifies the calculations once more and
lows both nucleation and coagulation to be taken into
count. Here we do not consider the process of coagulat
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assuming that the probability of this process is very low a
it can be observed only long after the end of nucleation.

We have to stress that here we are going to presen
analytical theory which does not require computer simu
tions except for some calculations of universal consta
This has to be done only once. The period of nucleation~i.e.,
the appearance of new droplets! is difficult to describe ana-
lytically and ordinarily one has to suggest some model
proximation to estimate the influence of the vapor consum
tion by the existing droplets. Sometimes this influence is
important and it is shown in@7# that this situation is rathe
widespread in laminar tube flows. In@7# the theory for this
case was given and the methods of describing the glo
evolution were presented completely.

An analytical method to describe most of the nucleat
process was presented in@8# on the basis of the balanc
equation for some characteristic time scales. The form of
size spectrum was postulated and the parameters of this
were associated with characteristic time scales. Then s
special equations to obtain these time scales were for
lated, which gives a way to get all the main characteristics
the nucleation process.

Here we are going to determine the form of the size sp
trum explicitly taking account of the profile of vapor densi
around every droplet. The great importance of the probl
of vapor exhaustion around the droplet was stressed by R
in @9#, where the stationary profiles around droplets we
obtained. Approximation of the stationary profiles was ne
essary in@9# to get the rate of droplet growth. It will be
shown that to describe the kinetics of nucleation it is ess
tial to use nonstationary profiles of the vapor density arou
the droplet instead of quasistationary ones. The appear
of contradiction between the approach in@9# and that used
below is explained by the fact that in@9# only distances nea
the droplet were considered. To get the rate of growth i
sufficient to consider only relatively small distances. Belo
we shall be interested in some large distances which have
scale of the mean distance between droplets.

To start our consideration one has to fix external con
tions. We shall analyze condensation after the instantane
creation of initial supersaturation, which is very often used
experiments. The theoretical investigations of this case
also rather numerous. Among them one can extract the
scriptions of metastable phase decay by Wakeshima@10#, by
Segal’ @11#, and by Kuni and Grinin@12#. The process of
©2001 The American Physical Society23-1
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V. KURASOV PHYSICAL REVIEW E 63 056123
condensation that occurs during a smooth variation of ex
nal conditions is considered in@13#. Nevertheless, all the
mentioned theoretical descriptions of a global picture of c
densation kinetics have ignored an important feature of
process, namely, the exhaustion of a metastable phase
the growing embryo of a new phase has not been taken p
erly into account. Certainly, this exhaustion is partially tak
into account in the expression for the rate of embryo grow
in the continuous model~i.e., in the diffusion regime of em
bryo growth!. This effect has been analyzed in both statio
ary and nonstationary aspects in many publications mainl
the field of mechanics of continuous media. But the prese
of a gap in the metastable phase density near a droplet
act on the rate of new droplet formation. This effect was
taken into account in all the mentioned previous theoret
descriptions of global evolution during a first order pha
transition. But, as shown in@14#, this gap can lead to larg
numerical effects in the description of the whole process

The reason that this effect has not been considered be
is rather trivial. Even under a spatially homogeneous c
sumption of the metastable phase the descriptions w
rather difficult to solve@13#. The condensation process h
usually been described in the free molecule regime of dro
growth where there will be no such gap. This was a seri
restriction of the theoretical description.

In some publications devoted to construction of a glo
picture of the phase transition~see, for example,@15#! the
regime of droplet growth was the diffusion regime. This r
quires consideration of the gap in the density near the gr
ing droplet but the vapor consumption was regarded as
mogeneous in space. Since this effect is very important
cannot present a reliable description without taking it in
account. Here we shall give a more realistic picture of
phase transition which takes this gap into account but allo
an analytical solution.

Qualitatively the picture of the condensation process
rather simple. A process of nucleation~i.e., formation of su-
percritical embryos of a liquid phase! leads to vapor exhaus
tion, which stops the process of nucleation, but the sup
critical embryos continue to consume the vapor phase.
the surplus material of the metastable phase will be accu
lated in the embryos of a new phase. One can say that
process of condensation is now completed.1

A global picture of homogeneous condensation with
plicit account of the density profiles was presented in@14#,
where very large numerical effects were observed, but o
narily the process of nucleation occurs on heterogene
centers.2 This fact radically complicates the theoretical d
scription due to the centers’ exhaustion. This exhaustion

1Further evolution includes the consumption of some relativ
small embryos by some relatively big ones. It will be seen later t
when all surplus material is consumed all droplets have appr
mately the same size, and we do not analyze this process he
description of the further evolution can be given with the help of
Ostwald ripening theory formulated by Lifshitz and Slezov.

2Also, it is simpler to observe the heterogeneous case experim
tally.
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essentially nonlinear character. For simplicity we shall
sume that there is only one type of heterogeneous center
the total number of centers is fixed in time. During the nuc
ation process some of the heterogeneous centers becom
centers of supercritical droplets that are growing irreversi
in time. But the nucleation process diminishes the numbe
free heterogeneous centers~those unoccupied by droplets!. In
some cases the total exhaustion of free heterogeneous ce
interrupts the nucleation; in some cases partial exhaustio
heterogeneous centers seriously diminishes the nuclea
rate. This effect has also to be taken into account in a th
retical description.

A simple analytical description of heterogeneous cond
sation will be presented here with a proper account of
problems mentioned above. As a result, all the main cha
teristics of the condensation process will be expres
through some parameters of the external conditions
through the substance parameters by explicit analytical
mulas. The error of the description presented will be e
mated.

The structure of the theory will be as follows. First w
shall analyze the density profile around a solitary droplet a
construct some approximations. This has much in comm
with the case of homogeneous condensation considere
@14# and will be considered briefly. Then we shall constru
some models for the kinetics of the process. We have
show that these models estimate the time evolution of
system during the nucleation period from above and fr
below. Since these models give similar results one can s
that an approximate description of the nucleation kinetics
given. The error of the description is thus estimated. Wh
the solution has been obtained we can compare it with
formulas given by the previous approach without dens
profiles and see the numerical effect of the gap near
growing droplets.

The small parameter of the theory will be the inver
number of molecules inside the critical embryo of a ne
phase. The small value of this parameter is not a restric
of our theory—it comes from the validity of the thermod
namic approach to calculating the free energy of the criti
embryo. There is no other reliable way to calculate the f
energy except the thermodynamic approach.3 To use the
thermodynamic approach it is necessary to have at lea
few dozen molecules inside the embryo.

Also, we shall require a barrier character of the nuc
ation. This means that every embryo has to overcome
activation barrier of a particular height to begin to grow
reversibly. This height is less than the critical energy for t
homogeneously~purely fluctuationally! formed embryo but
still attains several thermal units.4 Certainly, one can imagine
a situation when there is no activation barrier. Then all e
bryos immediately begin to grow irreversibly. The number

y
t
i-
. A
e

n-

3All microscopic models require very complex calculations th
cannot be fulfilled directly.

4All energylike values will be measured in thermal units.
3-2
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HETEROGENEOUS CONDENSATION IN DENSE MEDIA PHYSICAL REVIEW E63 056123
droplets ~i.e., the irreversibly growing embryos! will be
equal to the total number of centers and the kinetics of
process will be relatively simple.

We shall speak only about the density profiles around
droplet and ignore the heat extraction in the nucleat
process.5 In fact, the mathematical structure of the diffusio
equation resembles the structure of a heat transfer equa
So all constructions for the condensation heat extraction
be the same as for substance consumption. This effect
lead only to some renormalizations. That is why only a f
remarks will be made. Some detailed results can be foun
@6#.

We shall consider the situation of metastable phase de
This means that in the initial moment of time all the su
stance is in the vapor phase. All heterogeneous centers
free from droplets.

II. PROFILE AROUND THE SOLITARY DROPLET

Due to the external influence in the initial moment of tim
one can observe a homogeneous mother metastable p
with particle number densityn equal to some initial value
n0 . All heterogeneous centers are distributed rather homo
neously in space with the number densityh tot . A system of
unit volume is considered.

The process of condensation can begin only whenn0 is
greater than the molecule number densityn` in saturated
vapor over a plane liquid. The power of the vapor metas
bility is characterized by the value of the supersaturatioz
defined as

z5
n

n`
21 .

The initial value of the supersaturation is denoted byz0 .
Almost immediately there will be formed around eve

center an equilibrium embryo which hasne molecules. The
value ofne is relatively small6 and there is no need to con
sider the density profile around the equilibrium embryos.7

During the condensation process the number of free
erogeneous centersh decreases due to the exhaustion of
free heterogeneous centers,

h5h tot2N,

whereN is the number of supercritical embryos, which w
be called the droplets. Despite the simple form of the l
relation the effect is very complex becauseN depends on
time in a very complex manner.

5The validity of this assumption can be ensured by using a pas
gas.

6In comparison with the characteristic number of molecules ins
the droplet during the nucleation period.

7In fact the gap is rather small and will disappear rather fast. T
leads to a slight variation of the equilibrium embryo characterist
This variation will act on the gap in reverse, but the final relaxat
will be rather rapid.
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The effects of the density profile will be essential also
account of the heterogeneous centers’ exhaustion and
cannot directly apply the results of@13#. One has to deter-
mine the effect of the influence of the centers’ exhaust
even for the density profile of a solitary droplet.

We shall call the approach where the law of embr
growth is found from the continuous model but there is
account of the profile around the droplets the ‘‘additive a
proach’’ ~AA !. Then one can formulate the following evide
statement.

Statement 1. The duration of the nucleation period8 and
the characteristic sizes of the droplets at the end of the nu
ation period are greater than those calculated in the AA.

In fact, the existence of the density profile means that p
of the substance is going to be consumed from regions wh
there is no droplet formation. This material is consum
from the gap instead of from unexhausted regions as is s
posed in the AA.

Then having repeated all constructions9 from @13# one can
see the following.10

Statement 2. The characteristic size of the droplets at t
end of the nucleation period is many times greater than
size of the critical embryo. The main role in vapor consum
tion is played by the supercritical embryos.

Statement 3. The characteristic duration of the nucleatio
period is many times greater than the time of relaxation
the stationary state in the near-critical region. Thus one
use the stationary rate of nucleation as a measure of
intensity of droplet formation at every current moment
time.

Because of statement 2 one has to investigate the pr
around a growing droplet. The problem is whether one ha
consider the interference of profiles around different dro
lets. To solve this problem one has to use the small par
eter of the theory. From statement 3 the rate of nucleatio
equal to the stationary one. This can be taken from@1#,

I s5Zh exp~2DF !,

whereDF is the height of the activation barrier~in thermal
units!, h is the number of free heterogeneous centers~unoc-
cupied by the supercritical embryos!, andZ is the Zeldovic
factor. The Zeldovic factor is a smooth function of the s
persaturation that is given by

ve

e

is
.

8The period of nucleation is the period of relatively intense fo
mation of droplets. It can be proved that the end of this period
well defined due to the cutoff of the intensity of droplet formatio

9In @13# the AA was formulated for external conditions of dy
namic type. For the situation of decay the required hierarch
inequalities can be proved in the same way. Note that in@13# there
is no special reference to the types of condition when the requ
estimates are proved.

10A barrier character of the nucleation is required here. T
means that the magnitude of the activation barrier height has
same order as the free energy of the homogeneous critical emb
~it might be three on four times smaller!.
3-3
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V. KURASOV PHYSICAL REVIEW E 63 056123
Z5
W

p1/2DneDnc
,

where W is a kinetic factor,Dnc is the half-width of the
near-critical region, andDne is the width of the equilibrium
region. During the nucleation period the value ofZ can be
considered as as constant.

Due to its rather small size it is reasonable to use for
critical embryo the free molecule regime of substan
exchange.11 In this regime the expression for the nucleati
rate is well known. One has also to note that the criti
embryo is in equilibrium~but an unstable one! with the
metastable phase, which implies no profiles of vapor dens
and the regime of substance exchange has to be the
molecule one.

Under the free molecule regimeW can be calculated as

W53
z11

t
nc

2/3a ,

wherenc is the number of molecules inside the critical em
bryo, a is the condensation coefficient,

t;12@~36pv l
2!1/3n`vT#21

is the characteristic time,v l is the volume per one molecul
in the liquid phase, andvT is the mean thermal velocity of
molecule.

The value ofDnc is the half-width of the near-critica
region and it can be rewritten as

Dnc5 (
n<~nc1ne!/2

exp~2Fc1Fn!p21/2,

wheren is the number of molecules inside the embryo,Fn is
the free energy of the embryo ofn molecules, andFc is the
free energy of the critical embryo. In the continuous appro
mation it can be estimated as12

Dnc5U 2

d2F/dn2U
n5nc

1/2

.

The value ofDne can be estimated as

Dne5 (
n<~ne1nc!/2

exp~2Fn1Fe!

whereFe is the free energy of the equilibrium embryo. Bo
Dnc and Dne are rather smooth functions of the supersa
ration.

11Since the characteristic size of the droplet during the nuclea
is many times greater that the critical size it is quite reasonabl
use the diffusion regime of growth for the characteristic droplet

12Dne is usually smaller thanDnc and an explicit summation fo
Dnc is quite reasonable.
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One can see thatI s is a very sharp function of the supe
saturation. This means that a relatively small decrease of
supersaturation leads to an interruption of droplet formati

At least for z.z0/2 one can show thatd2z/dt2.0 and
there is no long tail of the size spectrum at small intensity
droplet formation. This means that an interruption of the
tensive droplet formation leads to an interruption of ne
droplet formation. So the relative decrease of supersatura
during the nucleation process is small. One can arrive at
following statement.

Statement 4. During the nucleation period the relativ
variation of supersaturation is small.

The last statement shows that there is no need to cons
the interference of profiles in order to change the rate
droplet growth~and only the rate of growth!.

On the basis of the expressions mentioned and the sm
ness of the relative decrease of supersaturation one can
the validity of the approximation

I s~z!5I s~z0!exp@DF~z0!2DF~z!#

for the nucleation period. Moreover, one can linearize
height of the activation barrier over the supersaturation
get

I s~z!5I s~z0!expS 2
dDF~z!

dz U
z5z0

~z2z0!D . ~1!

The validity of the last approximation depends on the p
ticular type of heterogeneous center but it is valid for t
majority of heterogeneous center types. For example,
validity can be directly proved for ions.

One can explicitly calculate the derivative in the la
expression,13

dDF

dz
52

1

z11
~nc2ne!.

The smooth character of the last expression shows the v
ity of Eq. ~1! once more.14

Then Eq.~1! can be rewritten as

I s~z!5I s~z0!expS G
z2z0

z0
D , ~2!

where

G52z0

dDF

dz U
z5z0

5
z0

z011
@nc~z0!2ne~z0!#.

The real value ofG is very large.15 Certainly, one can con-
sider the possibility of compensation betweennc and ne in

n
to

13Here we assume the vapor to be an ideal gas and suppos
possibility of presenting the free energy of critical and equilibriu
embryos as an analytical function of the inverse embryo radius

14A concrete value of the free energy derivative is not essenti
15Since the value ofnc in going to infinity here the value ofG is

also going to infinity.
3-4
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HETEROGENEOUS CONDENSATION IN DENSE MEDIA PHYSICAL REVIEW E63 056123
the expression forG. Then one has to mention that due to t
barrier character of nucleation at leastnc2ne>Dnc . Having
estimatedDnc as the homogeneous valueDnc;nc

2/3 one can
see thatG@1 in any case.

The small value ofG21 will be very important in further
constructions.

We see that the essential dependence on supersatur
occurs through the height of the activation barrier. This
lows one to give the interpretation of the stationary rate
nucleation as the probability for the given embryo to ov
come the activation barrier. After the interpretation ofI s as a
probability we can apply it to an arbitrary spatial point of
spatially inhomogeneous system. To use this interpreta
the natural requirement is a weak unhomogenity of a syst
namely, the volume of the regions where

z~r !2z~r 1A4Dts!

z~r !
!G21

is violated has to be relatively small. HereD is the diffusion
coefficient, andts is the time of relaxation in the near-critica
region, which can be estimated according to Zeldovic@1# as

ts;
Dnc

2

W
.

One can use instead ofts the timeDneZ
21, which can be

interpreted as the mean time to overcome the near-cri
region.

Both these estimates are valid. Actually we need th
only for those regions where the intensity of the droplet f
mation is not too small in comparison with the initial inte
sity. Certainly, the required property is observed in the
regions.

Now we have to turn to determining the rate of embr
growth. According to statement 2 above, the characteri
size of the droplets is rather large. Then it is more reason
to use the diffusion regime of droplet growth. At intermed
ate Knudsen numbers one has to use an interpolation law
the rate of embryo growth~for example, see@17,4#!. It will
be important that all expressions for the embryo growth le
to an avalanche of substance consumption.

The avalanche character of substance consumption m
that the quantity of substance accumulated by a droplet
creases strongly in time. The most evident manifestation
the avalanche consumption can be seen in the free mole
regime of substance consumption. The weakest effect ca
seen in the diffusion regime of substance consumption.
force of the iteration convergence in@13# is based on this
property. The property of avalanche consumption will be
tremely important in further constructions also. That is w
we take the diffusion regime, to have the worst situation a
to grasp errors in all possible cases.

In the diffusion regime of vapor consumption the law
growth for a droplet~i.e., for a supercritical embryo! can be
written in the following way:

dn

dt
5kzn1/3,
05612
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where

k5~ 2
3 !21/34pn`DS v l

2p D 1/3

is some constant. The last expression is written in the
tionary approximation. The nonstationary effects have b
investigated in many publications in detail and here they
rather small~see, for example,@9#!.

One can see that the rate of droplet growth is proportio
to z. So the rate of growth can be changed only by a relat
variation ofz. Then according to statement 4 one can see
following.

Statement 5. The rate of droplet growth during the nucle
ation period can be approximated as a constant.

The last statement is extremely important because it
lows us to analyze the profile of the density initiated by
solitary droplet.16 Now we are going to consider this prob
lem.

The approximately constant value of the supersatura
allows us to integrate the law of growth and to get

n~ t !5gt3/2,

where

g5~4p!3/2S 3v l

4p D 1/2S 2zn`D

3 D 3/2

and t is the duration of irreversible growth for the give
droplet. Consider a spherical system of coordinates with
center in the center of the droplet. The diffusion equation
written as

]n

]t
5DDn

whereD is the Laplace operator. The diffusion coefficientD
is supposed to be approximately constant~there is a lot of a
passive gas and the density of a gas mixture is approxima
constant!.

The boundary conditions are

nur 5`5n~`!,

nur 5Rd
5n` ,

where Rd is the radius of the droplet. The valuesn` and
n(`) are known parameters. The variabler is the distance
from the center of the embryo.

The stationary approximation is suitable for the rate
droplet growth. The errors are analyzed in@17# and they are
small. But the stationary solution cannot give a reasona
result for the density far from the droplet. The stationa
solution is

16The interference of the density profiles will be analyzed late
3-5
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V. KURASOV PHYSICAL REVIEW E 63 056123
n~r !5n~`!2
Rd

r
@n~`!2n`# ~3!

and has a very long tail. This tail leads to the infinite value

G5E
0

`

4pr 2@n~`!2n~r !#dr,

which must be the integrated excess of the substance, w
must be in the droplet. This contradiction shows that it
absolutely impossible to use the stationary approximation
the density profile around the droplet. One has to introd
another approach.

One can see that if the first boundary condition is chan
to

nur 5`5n~`!~12G21!

then the rate of embryo growth will not be essentia
changed. But the leveln(`)(12G21) is the level when
nucleation stops. So one can see that during the nuclea
period there is no interaction between droplets throug
change of the growth rate. Certainly, two droplets can app
too close and act upon one another but the probability
such a coincidence is very small. That is why one can co
to the principle of separate growth of droplets during t
nucleation period.

Now one has to prove that at the distances (5 – 10Rd
from the droplet one can observe a quasistationary pro
One has to note that

v l /vv!1, ~4!

wherevv is the partial molecular volume in the vapor phas
This last ratio is very small~for example, it is 0.001 for
water in normal thermodynamic conditions!. But unlikeG21

one cannot consider it in all cases as zero. Now one
introduce a formal parameterl which attains some large va
ues

l @1

but satisfies the condition

l 2
v l

vv
!1. ~5!

According to Eq.~4! it is possible to do this.
In the regionr< lRd the stationary profile is establishe

after

th5
l 2Rd

2

4D
.

It is necessary to show that

s[
Rd~ t1th!2Rd~ t !

Rd~ t !
!1.

In fact,
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s'
dRd

dt

th

Rd

and

s; l 2
v l

vv
,

which is a small value according to Eq.~5!. So the stationary
form of the profile in the regionr ,Rdl is proved.

Since G@1 and at leastG@ l one can see that in th
region r , lRd there is no formation of new droplets. Thu
this region is not interesting for the theory and one can
serve only the regionr . lRd .

The previous notation is rather important; this prope
allows one to use the model with a point source. One
consider only distances greater thanlRd , but at these dis-
tances the droplet can be interpreted as a point sourc
vapor consumption. Certainly, the point approximation o
droplet cannot give an expression for the rate of drop
growth because the boundary condition atr 5Rd is absent.
But the rate of growth is already known and can be us
directly as a known function of time. Thus

dn

dt
5lt1/2,

where

l525/2pv l
1/2z3/2n`

3/2D3/2.

The action of a point source of vapor consumption can
described in a simple and suitable manner by the Green fu
tion formalism. The Green functionGr for the diffusion
equation can be written in the form

Gr5Q~ t !
exp~2r 2/4Dt !

~4pDt !3/2 .

Then one can get the density profile by a simple integrati

n~r !5n~`!2E
0

t lx1/2

@4pD~ t2x!#3/2expS 2
r 2

4D~ t2x! Ddx.

After obvious transformations one can come to

z02z

z0
5A2/pAv l /vv f ~b!, ~6!

where

b5
r

A4Dt

and

f ~b!5E
b

`S 1

b22
1

x2D 1/2

exp~2x2!dx.
3-6
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It is important that the profile dependence ont andr is now
via b.

The concrete form off (b) is drawn in Fig. 1 in dimen-
sionless units. One can get forf (b) an expression through
special functions:

f ~b!5 1
2 G~ 3

2 !exp~2b2!C~ 3
2 , 3

2 ;b2!.

HereG is the Gamma function andC is the confluent hyper-
geometric function.

One can get the asymptotes forf (b) at small and large
values ofb. At small values,

f ~b!;
Ap

2

1

b
, ~7!

which corresponds to the stationary solution~3!. At large
values ofb one arrives at

f ~b!5exp~2b2!
1

2b3 E
0

`

x1/2exp~2x!dx;
exp~2b2!

b3 .

~8!

One can see that this asymptote differs radically from
stationary solution, namely this tail behavior gives conv
gence of the integral forG. Certainly, the Green function
formalism ensures a precise value forG, which is introduced
here as an external object.

Now we are going to construct an approximation for t
nucleation rate around the growing droplet. One can see
according to Eq.~2! the behavior of the supersaturation
important when z02z<(2 – 3)z0 /G. When z02z
>(2 – 3)z0 /G the intensity of droplet formation is negligibl
small. From Eq.~1! one can see that

I s„z~r !…5I s~z0!exp@2GA2/pAv l /vv f ~b!#.

Then one can extract the positive parameter

s[G2
v l

vv

which will be important in further constructions.
BecauseG@1 one can easily see that

FIG. 1. The form off (b).
05612
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The last condition is not necessary for further constructio
but it will be rather important for manifestation of the profi
effects in the nucleation process. The last condition is a
the most doubtful one becausev l /vv!1 and one has the
combination of two large parameters with generally u
known result. It is necessary to stress that the condit
v l /vv!1 is not as strong asG2@1. In the framework of the
thermodynamic descriptionG@1 is the main condition re-
quired and v l /vv!1 is a supplementary condition tha
slightly simplifies the theory.

In the situation of homogeneous condensation one ha
hidden contradiction between the thermodynamic descrip
and the relatively intensive nucleation. Since in homog
neous condensationDF5Fc;nc

2/3 the limit n→` means
DF→` and the rate of nucleation goes to zero. So there
contradiction between the thermodynamic limit in the critic
embryo description and the observable rate of nucleation17

In the case of heterogeneous condensation there is
such contradiction when there are some active center
condensation. Then the height of the activation barrier has
direct connection with the number of molecules inside
critical embryo. For example, the half-width of the nea
critical region estimated from the homogeneous value
;n2/3 and goes to infinity whenn→`, but the free energy
decreases at the boundary of the near-critical region only
one thermal unit. So in a certain sense the case of heter
neous condensation is preferable for theoretical descript

As a compensation for this advantage one has to note
both statements 1 and 2 are based on a homogeneous
mate for the activation barrier height. These properties
be violated. But since these statements are based on
strong inequalities one can accept their validity.

Now one can analyze the profile of the intensity of drop
formation around the already formed droplet. This profile
the nucleation rate is a rather sharp function which ha
steplike behavior.

To show this property we shall introduce two character
tic values ofb ~bst andbfin! by the relations

f ~bst!5Ap/2Avv /v l

exp~2 1
2 !

G
,

f ~bfin!5Ap/2Avv /v l

exp~ 1
2 !

G
.

In the regionb.bst the rate of nucleation essentiall
coincides18 with the unperturbed valueI s(z0). In the region
z,zfin the rate of nucleation is negligible in comparison wi
the unperturbed value, i.e.,I s„z(r )…!I s(z0).

At some momentt the valuesbst and bfin are related to
the space distancesr st and r fin by the expressions

17This is not very small.
18One can easily see the monotonic character off (b).
3-7



A
ic

io

o

to

tion

.
-
o

sis

ed

d
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r st5bstA4Dt,

r fin5bfinA4Dt.

Whens@1 one can arrive at

f ~bst!!1,

f ~bfin!!1

and

bst@1,

bfin@1.

Then one can use the asymptote~8! and see that

ubst2bfinu
bst1bfin

5
1

4bst,fin
!1,

ur st2r finu
r st1r fin

5
1

4bst,fin
!1.

The real picture of nucleation occurs on the time scale.
a fixed space pointr one can introduce two characterist
times tst and tfin by the expressions

tst5
r 2

4bst
2D

,

tfin5
r 2

4bfin
2 D

.

Beforetst one cannot observe any deviation of the nucleat
rate from the unperturbed value. Aftertfin the rate of nucle-
ation is very small.

One can get for the relative deviation

d[
tfin2tst

tst,fin

the expression

d;
1

bst,fin
.

So the relative deviation is small. Even in the situation
smalls one can show with the help of asymptote~7! that the
value ofd is rather small.

The steplike behavior of the intensity profile allows one
introduce some characteristic parameterbeff and to consider
the region19

b,beff

19At s!1 the value ofbeff can be greater thanbst andbfin .
05612
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as the exhausted region where there is no longer nuclea
and the region

b.beff

as the region where the rate of nucleation is unperturbed20

One has to choosebeff carefully. The problem is the pos
sibility of existence of a long tail of the density profile. T
grasp the situation of small values ofs one has to introduce
beff in an integral manner.

One can introduce the excess of the nucleation rateDI s by
the formula

DI s5I sE
0

`F12expS 2
G„z02z~r !…

z0
D G4pr 2 dr,

whereI s is the unperturbed rate of nucleation. On the ba
of this expression one can get the excess ofN due to the
existence of the solitary profile. This value will be denot
DNsol and can be found as

DNsol5I sE
0

tE
0

`F12expS 2
G„z02z~r !…

z0
D G4pr 2 dr dt8.

Having used Eq.~6! one arrives at

DI s54p~4Dt !3/2I s

3E
0

`

$12exp@2GA2/pAv l /vv f ~b!#%b2 db .

The parameterGA2/pAv l /vv has a constant value.
The valueDNsol can be presented as

DNsol54p~4Dt !3/2I s

3E
0

tE
0

`

$12exp@2GA2/pAv l /vv f ~b!#%

3b2 db dt8.

The steplike approximation of the nucleation profile will lea
to

DI s
0~beff!54p~4Dt !3/2I sE

0

beff
x2 dx.

The valuebeff has to be determined from

DI s
0~beff!5DI s .

Certainly, the value ofbeff depends onGA2/pAv l /vv.
The value ofbeff leads to

r eff52beffD
1/2t1/2.

One can state that inside the volume

20In all casesbeff.bfin .
3-8
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HETEROGENEOUS CONDENSATION IN DENSE MEDIA PHYSICAL REVIEW E63 056123
Veff5
4
3 pr eff

3

there is no nucleation and outside this volume the rate
nucleation is unperturbed. Thus one can imagine that aro
every solitary droplet there is an exhausted region~ER!
where no nucleation is observed and around the ER the
the unexhausted region~UR! where the nucleation remain
unperturbed. The whole space now is divided into two
gions.

The volumeVeff grows in time in the following way:

Veff5
32

3
pbeff

3 D3/2t3/2.

In the free molecule regimeVeff will grow even faster.
For beff one can get the simple expression

beff
3 53E

0

`

$12exp@2GA2/pAv l /vv f ~b!#%b2 db

or

beff
3 53E

0

`

$12exp@2s1/2A2/p f ~b!#%b2db.

For DNsol one can obtain

DNsol5I s~z0!E
0

t

dt8Veff5I s~z0!E
0

t

dt8 4
3 pr eff

3 .

One can easily integrate the last expression and get

DNsol5I s~z0!
64

15
pbeff

3 D3/2t5/2.

One can see thatDNsol is growing in time rather rapidly.
That is, this property illustrates the feature of avalanche c
sumption during a first order phase transition as applied
heterogeneous nucleation.

For those situations wheres@1 one can get

beff'bst'bfin

andbeff is determined by the simple equation

exp~2beff
2 !5beff

3 Avv /v lAp/2
1

G
.

The last equation can easily be solved by iteration si
beff@1 and exp(2b2) is a very sharp function.

When the principle of separate growth was discus
some remarks were made. The reason given for the abs
of interaction between droplets was the low probability
appearing too close to one another due only to the small
of the space volume. Now one can see that the growing
also helps to exclude interaction. The essential deviation
supersaturation from the ideal can be seen in the regior
,Rdl . This means that the distance between the drop
with interference must be of the order 2Rdl . Then the time
distance between the moments of formation of these drop
must be shorter than
05612
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Dt init;S Rdl

beffD
1/2D 2

.

This time interval is many times shorter than the duration
the nucleation period.

Rather rapidly after the moment of formation every dro
let forms an ER of such a size that it guarantees that the
of growth of the given droplet cannot be perturbed by vap
consumption initiated by other droplets.

III. KINETIC MODELS OF GLOBAL EVOLUTION

Now one can construct the picture of nucleation in t
whole system. The main problem is to take into account
interference of the density profiles. Interference through
rate of growth is absent, but there is a simple overlapping
profiles. This overlapping leads to deviation of the to
nucleation rate over the volume from those calculated tak
account of the additive excess around every droplet.

The overlapping of ER’s~even when this approximat
formalism is used! is very complex and cannot be direct
taken into account in a precise manner. Instead of us
some long expressions that cannot be explicitly calcula
one can act in another manner. First some simple appr
mate models for the kinetics of the nucleation process will
formulated. These models estimate the nucleation chara
istics from below and from above and lead essentially
similar results. So it will be shown that the complex deta
of ER overlaps have no strong influence on the real cha
teristics of the phase transition.

First one can consider the common feature of all mod
This feature is concerned with the exhaustion of free hete
geneous centers.

The rate of nucleationI depends on timet and on spatial
point r ~the last behavior is the most complex!. So it is rea-
sonable to consider the mean~over space! value of I, denot-
ing it by ^I&. For ^I& one can write the expression

^I &5
Wfree

Wtot

h

h tot
I 0 , ~9!

whereI 0 is the unperturbed rate of nucleation. HereWfree is
the volume of the region where the rate of nucleation
unperturbed, i.e., the total UR of the whole system. T
valueWtot is the total volume of the system~it equals unity
and is written only to clarify the consideration!.

Then since

N5E
0

t

^I &~ t8!dt8

one can get

h5h tot2E
0

t

^I &~ t8!dt8.

In the differential form the last relation can be written as

dh

dt
52^I &
3-9
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and with the help of Eq.~9! it can be rewritten as

dh

dt
52

h

h tot

Wfree

Wtot
I 0 .

After integration of the last expression one arrives at

h5h tot expS 2E
0

t Wfree~ t8!

Wtot

I 0

h tot
dt8D . ~10!

One should note that the heterogeneous centers are
distributed homogeneously with respect to the ER~or UR!.
Only free heterogeneous centers are distributed hom
neously with respect to the ER. This fact has also to be ta
into account.

The problem is to determine the value ofWfree. In differ-
ent models it will be given in different forms.

A. The model without overlap

One can write

Wfree5Wtot2Wexh

whereWexh is the volume where there is no further formatio
of droplets. Very approximately one can present it as the s
of all ER’s around all already existing droplets,

Wexh'(
i

Veff

~the sum is taken over all already formed droplets!. Cer-
tainly, the last approximation is rigorous only when there
no overlap of the ER’s around different droplets.

Having used the expression forVeff one arrives at

Wexh5E
0

t

dt8^I &~ t8!
32

3
pbeff

3 D3/2~ t2t8!3/2. ~11!

After using the expression for̂I& one comes to the close
system of nucleation kinetics equations

Wfree5Wtot2E
0

t

dt8
h

h tot

Wfree

Wtot
I 0

32

3
pbeff

3 D3/2~ t2t8!3/2,

h5h tot expS 2E
0

t Wfree~ t8!

Wtot

I 0

h tot
dt8D[Ĥ~Wfree!. ~12!

Now we have to introduce the quasihomogeneous lim
When there is no essential exhaustion of the heterogen
centers a balance equation for them is not necessary. O
the balance equation for the substance molecules has t
considered. Equation~12! has the same form as in the hom
geneous case~after some proper renormalizations!. That is
why we shall call it the quasihomogeneous equation.

In the quasihomogeneous limit this system can be redu
to

Wfree5Wtot2E
0

t

dt8
Wfree

Wtot
I 0

32

3
pbeff

3 D3/2~ t2t8!3/2,
05612
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which can be rewritten after the obvious renormalizationt

→at, t8→at8 wherea5(I 0
32
3 pbeff

3 D3/2)2/5 in the universal
form

Wfree512E
0

t

dt8~ t2t8!3/2Wfree.

One should note that in the general case the system of nu
ation equations can be solved with the help of methods p
sented in@13#. First one can solve the quasihomogeneo
equation ~it is a Volterra equation21 with a rather simple
kernel which allows one to apply the Laplace transformat
to solve it!, and then on the base of the quasihomogene
equation one can find the final rather precise expression
ing Eq. ~10! as the formula forh.

Another variant is to solve numerically the univers
equation forWfree hom:

Wfree hom512E
0

t

dt8~ t2t8!3/2Wfree hom.

As a result one has the universal functionWfree hom. Then
one can findh as

h5h tot expS 2a21E
0

t Wfree hom~ t8!

Wtot

I 0

h tot
dt8D .

The last expression leads to the formula for^I&:

^I &5
Wfree hom

Wtot
expS 2a21E

0

t Wfree hom~ t8!

Wtot

I 0

h tot
dt8I 0D .

The justification for such an approach is analogous to@13#.
The physical reason is very simple: when there is no exha
tion of heterogeneous centers then the solution is found
cisely; when there is an essential exhaustion of centers t
is no need to knowWfree with high precision because th
converging force ofĤ is extremely high.

Now we shall take into account the effect of overlappin
This can be done rather approximately.

B. The model with chaotic overlap

The matter under discussion is the correct expression
Wfree, which cannot be found absolutely precisely. Now
reasonable expression forWfree will be presented. Certainly
this will lead to a more complex equation, which will b
more difficult to solve.

One can use the differential approach to write the expr
sion for Wfree. Having written the obvious relation

dWfree

dt
52

dWexh

dt
,

one has to invent an approximation fordWexh/dt. Here the
approximation

21The nonlinear generalization.
3-10
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dWexh

dt
'

d( iVeff

dt

Wfree

Wtot

will be used~the sum is taken over all droplets!. It corre-
sponds to the following approach: The probability of t
absence of overlap of the new parts of the ER around a g
droplet with other ER’s is proportional to the free volume
the system. This supposition seems to be rather reasona

The valuedS iVeff /dt can be rewritten as

d( iVeff

dt
5(

i

dVeff

dt
.

This can be easily expressed through^I& as

(
i

dVeff

dt
5

3

2 E0

t

dt8^I &~ t8!
32

3
pbeff

3 D3/2~ t2t8!1/2

~13!

due to Eq.~11!. Then

dWexh

dt
5

3

2 E0

t

^I &~ t8!
32

3
pbeff

3 D3/2~ t2t8!1/2dt8Wfree~ t !

and

dWfree

dt
52

3

2 E0

t

^I &~ t8!
32

3
pbeff

3 D3/2~ t2t8!1/2dt8Wfree~ t !.

Having used an expression for^I& one arrives at

dWfree

dt
52

3

2 E0

t Wfree

Wtot
I 0

h

h tot

32

3

3pbeff
3 D3/2~ t2t8!1/2dt8Wfree~ t !.

Together with Eq.~12! the last equation forms the close
system of nucleation equations in the second model.

The previous equation can be integrated, which gives

ln Wfree52E
0

t Wfree~ t8!

Wtot
I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!3/2dt8

1const.

Because of the initial conditions the value of the constan
equal to zero. Having introduced the functionF5
2 ln Wfree, one can get forF,h the following system of equa
tions:

F~ t !5E
0

t

exp@2F~ t8!#I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!3/2dt8,

h5h tot expS 2E
0

t

exp@2F~ t8!#
I 0

h tot
dt8D .

One can see that the system of condensation equatio
identical to the system of condensation equations in the A
It was completely analyzed in@13#. Certainly, the parameter
in the system will be different.
05612
en
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The last system can be rewritten after the obvious ren
malization as

F~ t !5E
0

t

exp@2F~ t8!#~ t2t8!3/2u~ t8!dt8[F̂~F,u!,

u~ t !5expS 2AE
0

t

exp@2F~ t8!#dt8D[û~F !,

whereu(t)5h(t)/h tot andA is some known parameter. Thi
system can be solved by iterations defined as

Fi 115F̂~Fi ,u i !,

u i 115 û~Fi !

with F050,u051. For Fi ,u i one can get the chains of in
equalities

F0,F2¯,F2i,¯,F,¯,F2i 11,¯,F3,F1 ,

u1,u3,¯,u2i 11,¯,u,¯,u2i,¯,u2,u0 .

Thus one can estimate errors inFi andu i .
One can also use other methods analogous to those

scribed in@13#.
The similarity of the condensation equations in the A

and in the second model is extremely important for the tr
sition toward the collective character of vapor consumpti
which is analyzed in@13#. The physical reason for the con
sidered model is the chaotic overlap of ER’s that is, t
chaotic overlap lies at the base of the approximation u
here. But due to the spherical form of every ER the over
is not absolutely chaotic. What can be done in such a si
tion? In the next model we shall show that the actual type
overlap is not very important.

To finish with the second model we shall show the sa
method of its solution as for the first model. One can a
formulate the quasihomogeneous equation as

Fhom~ t !5E
0

t

exp@2Fhom~ t8!#I 0

32

3
pbeff

3 D3/2~ t2t8!3/2dt8.

Thenh can be approximately found as

h5h tot expS 2E
0

t

exp@2Fhom~ t8!#
I 0

h tot
dt8D .

The quasihomogeneous equation can be renormalized. A
the renormalizationz→at,t8→at8 where

a5S I 0

32

3
pbeff

3 D3/2D 2/5

one can transform the quasihomogeneous equation into
universal form

ln Wfree hom~ t !52E
0

t

Wfree hom~ t8!~ t2t8!3/2dt8.
3-11
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C. The model with formation of droplets inside the ER

The third model will show that the role of the overlap
not so essential as might be imagined initially. Suppose
new droplets can also appear in the ER of the already e
ing droplets. Then instead of Eq.~13! one has to use

(
i

dVeff

dt
5

3

2 E0

t

dt8I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!1/2.

Then

dWexh

dt
5

3

2 E0

t h~ t8!

h tot
I 0

32

3
pbeff

3 D3/2~ t2t8!1/2dt8Wfree~ t !

and

dWfree

dt
52

3

2 E0

t

I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!1/2dt8Wfree~ t !.

Together with Eq.~12! the last equation forms the close
system of nucleation equations in the third model.

The material balance equation of the system can be i
grated to give

ln Wfree52E
0

t

I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!3/2dt81const.

From the initial conditions the constant in the last equation
equal to zero. Having introduced the functionF52 ln Wfree
one can get forF,h the following system of equations:

F~ t !5E
0

t

I 0

h~ t8!

h tot

32

3
pbeff

3 D3/2~ t2t8!3/2dt8,

h5h tot expS 2E
0

t

exp@2F~ t8!#
I 0

h tot
dt8D .

This system corresponds to the first iteration in the solut
of the second model by the method of iterations describe
@13#. These iterations are also mentioned above. Forh the
whole set of iterations has been taken~see details in@13#!.

One can slightly modify the model and suppose that in
expression forh one can use the same approximation for^I&
as in the equation forWfree. Then the last system of equa
tions will precisely correspond to the first iteration in th
iteration solution. One need not analyze these models in
tail following @13# but just note that all these solutions a
very similar.

Now one has to explain why the third model is rath
accurate. One can do it only with the help of results obtain
in @16#. There was noted that when the power of the ker
(t2t8) is rather large the solution of the quasihomogene
equation depends weakly on the actual value of the powe
is also important that when the power of (t2t8) is extremely
high the ER of the given~first! droplet formed inside the ER
of another~second! droplet cannot go outside the ER of th
~second! droplet. The third model is absolutely adequate
this situation. The same feature can be seen directly from
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results of the iteration procedure. Combining these two
sults, one can see that the second model is close to the
iteration ~i.e., to the modified third model! in the situation
with large power in the kernel where the third model is su
able.

Now it is possible to explain why the overlap is not s
important as might be imagined. Since the power of the k
nel is large and one can observe avalanche consumptio
the vapor phase, one can see the following qualitative p
ture. ~1! During the whole period of nucleation the total E
is small and there is no problem of overlap.~2! At the end of
the nucleation period the total ER will occupy the essen
part of the volume and a few moments later it occupies
the volume of the system. This process is rather rapid
stops the nucleation. This picture shows that there is
strong influence of the overlap on the nucleation proc
~except for the final moments of the nucleation period!. But
in the final moments only a few droplets can be formed, s
is not very important to know the overlap in the final m
ments of the nucleation period.

The nucleation description is now complete. One can
both the second and the third models to get the nuclea
description. How to solve these equations is also descri
here. Now we can turn our attention to a more accur
method which does not give an analytical expression for
size distribution of droplets but gives more precise univer
results for all essential characteristics of the nucleation
riod.

D. The universal solution

The main idea of the theory presented in@13# was to
consider the quasihomogeneous equation, to get a unive
solution, and then on the basis of this solution to calcul
the number of free heterogeneous centers. As a result
can get an expression for^I& and can calculate the total num
ber of droplets appearing during the nucleation process.

Here we follow the same idea, but develop it further. It
not necessary to formulate the universal quasihomogene
equation. Instead of the universal equation one can formu
a universal model.

The model will be the following.
~i! The rate of nucleation̂I& can be found from

^I &5I 0

Wfree

Wtot

h

h tot
.

~ii ! With intensity I 0 the droplet appears at an arbitra
point of the system.

~iii ! The valueWfree can be found by exclusion of all ER’
around the already existing droplets.

~iv! If the point is occupied by the ER of any droplet the
the new droplet cannot be formed.

~v! The sizer eff of the ER grows in time according to

r eff52beffD
1/2t1/2.

~vi! The initial conditions are the absence of droplets a
the random distribution of centers.
3-12
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With the proper renormalization of timet and sizer one
can cancel all coefficients. Then this process will be a u
versal one and as a result the value ofWfree is a universal
function of time. Then one can directly apply Eq.~12! and
get the number of free heterogeneous centers~after the
proper renormalization!.22 This number is the main result o
the approximate separation principle. All other qua
integrals of the further evolution can be obtained in the sa
manner.

The modification for dynamic conditions@13# requires us-
ing instead ofI 0 the valueI 0 exp(ct) with some parameterc
determined by external conditions and changing the lo
limit 0 of integration to2` @13#. The main constructions o
the theory will be exactly the same but the forms of t
characteristic curves will be radically changed.

IV. NUMERICAL RESULTS

Numerical simulation plays at least two important rol
here. The first is the standard comparison with the appr
mate models to observe their quality. The second is m
specific and is concerned with some universal dependen
in the nucleation kinetics.

In the additive approach to the nucleation kinetics it w
shown that an adequate approach can be presented o
basis of the quasihomogeneous solution@13#. Despite the
dynamic conditions considered in@13# this is true in the situ-
ation of metastable phase decay also. Recall the reason
such an approach. The formal reason is the careful ana
of the iteration procedure proposed in@13#. The final result
for the total number of droplets appearing in the nucleat
process is given by the second iteration~see the iterations o
typea in @13#! for the relative number of free heterogeneo
centers. This iteration is based only on the first iteration
the supersaturation. There the value of the supersaturati
calculated without taking account of the heterogeneous c
ters’ exhaustion. So one can see that the final result ca
obtained on the basis of supersaturation in the quasihom
neous approximation. This approximation can be more
phisticated than the first iteration, that is, it was used in@13#
where the precise quasihomogeneous universal solution
chosen as the basis for the final results.

The physical reason for such behavior is rather simp
The main role in vapor consumption is played by droplets
relatively large sizes. We have already remarked on this f
Moreover, due to the avalanche character of the vapor c
sumption the main role is played by the relatively large dro
lets that are formed in the first moments of time of the nuc
ation period. When the effect of center exhaustion is alre
essential in the first moments of the nucleation period23 then
at the end of the nucleation period all centers will already
exhausted. The result is evident—all centers will be the c

22This will complete the quasihomogeneous approach method
23More precisely one can define these ‘‘first moments of time’’

2/5 of the nucleation period duration~under the free molecule re
gime it is 1/4 of the nucleation period duration!. The reason for
such concrete values can be seen from the iteration procedure
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ters of droplets. Because of the high force of convergenc
this situation this result can be obtained without any prec
information about the behavior of supersaturation~even in-
cluding the quasihomogeneous case!. In the opposite case
when the exhaustion of heterogeneous centers during the
moments of the nucleation period is not essential one can
the quasihomogeneous behavior of supersaturation.

This property can be viewed as an approximate separa
of the heterogeneous and homogeneous problems. It is b
only on the avalanche consumption of the metastable ph
So there are no objections to seeing this effect also with
density profiles considered here. Thus it is rather import
to get the solution in the quasihomogeneous situation an
clarify whether it can be presented in a universal form.

The universal form of the quasihomogeneous solution
be easily seen in the situation with density profiles also.
the AA there was no specific space scale because the
sumption took place homogeneously at all space points
the system. Here in the situation with density profiles ther
an elementary space scale and one can choose the space
to ensure that the linear size of the ER around the drople
growing24 as t1/2 without any additional coefficients. Th
time scale has to be chosen so that in the initial free volu
~equal to the total volume of the system! one can see the
appearance of one droplet in the unit of time. Since the fu
tional dependencies of the nucleation rate and of the ra
of the ER on the time and on the space variables are
identical one can make such a renormalization without a
problems. Thus we see that here the pseudohomogen
case allows a universal description.

The process of exhaustion of the heterogeneous cen
destroys this universality and one has to act as in@13#.25 The
total number of droplets has to be approximately calcula
as

Ntotal5h totF12expS 2
Nhom

h tot
D G , ~14!

whereNhom is the number of droplets appearing in the qua
homogeneous situation~with the same parameters!. This for-
mula can also be used for all approximate models descr
earlier.

For the numerical simulation it was convenient to co
sider a cubic box of side 10 units. The rate of ER growth
chosen as

dR

dt
5100t1/2

whereR is the radius of the ER. The rate of nucleation
chosen to have one attempt at new droplet formation in
system duringdt50.002. The spatial position of this attem
is determined by a random procedure. It may lead to a p
tion in one of the ER’s and then no droplet will be formed.

s

24Certainly the power has to be conserved.
25Here we use a slightly simpler and more approximate metho
3-13
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V. KURASOV PHYSICAL REVIEW E 63 056123
the opposite situation when the point indicated is outside
ER’s of all droplets already existing there will be formatio
of a new droplet.

One has to stress that the random procedure ordina
used in computer simulations has one specific negative
ture. In the standard numerical procedures the next ran
coordinate is calculated on the basis of the previous ones
if the current coordinate lies near the center of an alre
existing ER then the next coordinate will also be near
center of another ER. These correlations lead to the nece
to consider a large system. In the system under considera
the number of droplets appearing in the quasihomogene
situation will be near 500. Nevertheless the mean squ
fluctuation will be about 20.

The correlations mentioned are not the only source
fluctuations.26 Careful consideration shows that the error
troduced by the substitution of zero boundary conditions
periodic ones has the same power as the mean square
This can be seen directly by numerical simulation. It is e
plained by the obvious fact that the characteristic overlap
profiles is about the mean profile size. We shall call t
feature the property of ‘‘moderate overlap.’’ This fact can
proved analytically.

The mean value of the total droplet number is equal
504.8~under zero boundary conditions!. This value has to be
put into the previous formula.

The avalanche character of vapor consumption is ill
trated by Figs. 2–4. Three different moments of timet
50.5, 1, and 1.5 are chosen as characteristic values.
space cross section of the system is drawn. The dashe
gions correspond to the ER’s of the droplets already exist
The black regions correspond to the overlap of ER’s.27

Now the effects of exhaustion of the heterogeneous c
ters will be considered. The number of heterogeneous cen
in this system is arbitrary. Certainly the effects of their e
haustion will be important when the number of centers

26To prevent these correlations one has to use some special
dom procedures.

27For technical reasons, this occurs only when the distance
tween the neighboring centers is odd.

FIG. 2. The cross section of the system att50.5 for the quasi-
homogeneous situation.
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small ~in comparison withNhom5504.8!. Pictures forh tot
550 are drawn in Figs. 5–7 fort51.5, 3, and 6. One can se
that the number of ER’s is smaller than in the quasihomo
neous case. The size of the ER’s when the free volum
almost exhausted is larger than in the quasihomogene
case. The time necessary to cover the whole volume w
ER’s is greater than in the quasihomogeneous case.
does not mean that the duration of the nucleation perio
longer ~simply, all centers will be exhausted and this mea
the end of nucleation!. Moreover, the duration of the nucle
ation period in the situation with a relatively small number
heterogeneous centers will be shorter than in the quasiho
geneous case.

One can also see that the avalanche character of the v
consumption in the whole system~not by a solitary droplet!
here will be smoother than in the quasihomogeneous c
Certainly, in the quasihomogeneous case the appearanc
some new ER’s helps to consume the vapor phase in
avalanche manner. But in the situation with a small num
of centers there is no need to consider the process care
because the exhaustion of centers leads to the obvious r
of condensation—the number of droplets equals the num
of centers.

It is evident that the main object of our interest will be th
quasihomogeneous case. The relative rate of nucleatio
this case is shown in Fig. 8. Here the rate of nucleation
averaged over 100dt[0.2 and over 16 attempts. So the ra
of nucleation here is a rather smooth function.

The relative rate of nucleation is compared in Fig. 8 w
the models described above. The rate of nucleation defi
the spectrum of sizes when the role of the size of the emb
is played by some characteristic that has a rate of gro
independent of the size. For the diffusion regime this ch
acteristic is the number of molecules to the power2

3.
One can see in Fig. 8 three different curves and so

solitary points. The solitary points correspond to the nume
cal simulation of the quasihomogeneous case and the t
curves correspond to the three models in the quasihom
neous case.

The shortest spectrum is for the first model. This line
doubled. This occurs because the ideal variant of the
model is also drawn. This ideal variant corresponds

an-

e-

FIG. 3. The cross section of the system att51 for the quasiho-
mogeneous situation.
3-14



e
l i
a

d
ich
n
a

th
t
u

te
e
o

et
a
th

les

-
er
p

i-

lso
ve

hat
the
can
are

n
p-
ar-

po-

ther
re
the
R’s
er-
ar-

ple
late

r
e

HETEROGENEOUS CONDENSATION IN DENSE MEDIA PHYSICAL REVIEW E63 056123
Wfree/Wtotal[1 in the subintegral function. The coincidenc
of the two lines means that the main role in the first mode
played by the relatively large droplets that were formed
Wfree5Wtotal.

The longest spectrum corresponds to the second mo
This curve is very close to the intermediate curve wh
corresponds to the third model. The approximate coincide
of the second and third models shows that both of them
valid and the role of the relatively large droplets here is
main one. One also sees that even the first model is not
far from the real solution. This allows us to present rigoro
estimates for the nucleation rate.

Now we going to present rigorous analytical estima
from below and from above for the evolution during th
nucleation period. Certainly the first model is an estimate
the real process from below. It gives a number of dropl
about 20% less than the numerical simulation. An estim
for the nucleation rate from above can be obtained in
following way. From the first model it follows that untilt
50.52 ~this case is essentially drawn in Fig. 2! the rate of
nucleation is near the ideal value and the deviation is
than 15%. So one can say that the period 0,t,0.52 corre-
sponds to the absence of overlap~the first model is the esti
mate from above!. Thus one can consider the process wh
the total volume is exhausted only by the ER’s of the dro
lets appearing at 0,t,0.52 in a random manner. The distr

FIG. 4. The cross section of the system att51.5 for the quasi-
homogeneous system.

FIG. 5. The cross section of the system att51.5 for h tot550.
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bution of the centers of the ER’s of such droplets is a
random. This model certainly gives an estimate from abo
for the nucleation process. A simple calculation shows t
the total number of droplets is only 25% greater than
result of the estimate from above. As a conclusion one
state that two suitable estimates from below and above
obtained.

The proximity of the last estimate to the real solutio
justifies the supposition that the main role in vapor consum
tion belongs to the droplets of relatively large sizes appe
ing when the system is essentially free of ER’s. This sup
sition can also be justified in an analytical manner.

One can see that the second and third models are ra
close to the real solution but do not coincide with it. The
are at least two reasons for the deviation. The first is
presence of strong correlations in a real system—if two E
overlap in some moment of time then the power of the ov
lap can only grow in time. It does not have a random ch
acter as stated in the second and third models.

This effect can be taken into account in a rather sim
manner. It is sufficient to consider two spheres and calcu
the power of the overlap as a function of distance and time~it
is a simple geometrical problem!. Unfortunately the answe
can be written only in a very complicated form. If we hav
two ER’s with radii R1 and R2 with a distancel between
their centers andl .max(R1,R2), then the volume of overlap
is

FIG. 6. The cross section of the system att53 for h tot550.

FIG. 7. The cross section of the system att56 for h tot550.
3-15
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Vover5
2pR1

3

3
~122 cosw11cos3 w1!

1
2pR2

3

3
~122 cosw21cos3 w2!,

where

cosw15
2R2

21R1
21 l 2

2R1l
,

cosw25
2R1

21R2
21 l 2

2R2l
.

Certainly, this result cannot lead to a simple form of t
balance equation. It will be difficult to solve it analytically

The second reason for the deviation is the moderate o
lap problem. This property means that actually there is
interaction through overlapping in an ensemble of seve
droplets. Earlier this property was extracted@18# in terms of
a special effective length of the ER. Now we see that t
property is rather general. The way to solve this probl
proposed in@18# is very complicated and leads to some u
certain relations.

FIG. 8. Comparison of different models in the quasihomo
neous situation.

FIG. 9. Relative error of the quasihomogeneous approach in
first model.
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How can one overcome all these problems? In fact, o
has no need to do it analytically. A simple numerical sim
lation takes into account all these effects and gives a uni
sal solution. Really we need only one number—the to
number of droplets that have formed. This can be given
the numerical simulation. Then one can forget about all
mentioned difficulties.

Now one can analyze the heterogeneous case explicitl
suitable approximation is given by Eq.~14!. One has to sub-
stitute instead ofNhom the number of droplets given by th
corresponding model.

The relative error of approximation~14! is drawn in Fig. 9
for the first model, in Fig. 10 for the second model, and
Fig. 11 for the third model. It is rather small for all model
For the third model it is practically negligible. This is be
cause the third model is based on the approximation of c
otic overlap.

One can perform the same analysis for the numer
simulation. In Fig. 12 the relative error of~14! for numerical
simulation is drawn. Here in Eq.~14! the value Niom
5504.8 from the numerical simulation is used. The resul
compared with a computer simulation of heterogeneous c
densation. This simulation is rather simple. One can take
procedure for the quasihomogeneous case but place the
ter of the new droplet with probabilityh/h tot . Every time
this point is outside the ER we reduceh ash→h21.

One can see that the relative error is very small. We
not use an average over many attempts~this is the reason
why there is no smooth curve! to see that the error of Eq
~14! has the scale of the mean square error of the nume
simulation.28 So there is no need to use a more sophistica
approach.

The solution of the problem is now completed. Genera
zation for conditions of dynamic type is absolutely ana
gous to@14#. The convergence due to avalanche consump
is weaker and one has to use instead of the approxima
~14! a more sophisticated procedure described in@13#. The
universal constants used in@13# have to be calculated by
numerical simulation with the density profiles taken into a
count. Generalization to the arbitrary regime of drop

28Here there is a system with 500 droplets.

-

e

FIG. 10. Relative error of the quasihomogeneous approac
the second model.
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growth can be done as in@14#. The generalization is based o
the similarity of the functional forms obtained here and
the AA. This similarity lies at the base of the universali
property formulated in@16,18#.

One can see that the theory of condensation with profi
taken into account presents a picture that is quite differ
from the AA. Nevertheless, in many situations the result
experiment coincides with the result of the AA. One has
explain this coincidence although it is a rather formal one
any experiment it is more convenient to have a small sys
and to get many droplets. The rate of nucleation has to
taken as a rather high one. So the supersaturation is relat
high and the parameters21 is not a real small parameter o
the theory.29 Thus as shown in@18# the AA gives the correct
qualitative result despite the wrong basis of considerat
The reason lies in the fact that at smalls most of the material
is in the tail of the profile. The tail of the profile is rather th
and can be taken into account by the AA. The correct
term for the AA at smalls can also be found in@18#.

An important feature to mention is the movement of t
embryo boundaries. This problem has been widely discus
in the determination of the rate of regular growth for sup
critical embryos. In different systems the effect of the boun
ary movement on the rate of growth is different. We no
that in the theory presented here the rate of the emb
growth is an external value which is supposed to be know30

Another problem is to take adequate account of the ef
of boundary movement in the method of constructing
ER. If part of the volume is occupied by the liquid phase
the given embryo, one cannot use the Green function o
empty space in an absolutely precise manner. In the first
of this paper we already showed that the effect is small. H
we shall present abstract arguments for this conclusion.

29It is not necessary for the consideration presented here, but i
to be small for a thermodynamic description of the critical embr

30It is really known for essentially all systems.

FIG. 11. Relative error of the quasihomogeneous approac
the third model.
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To use the thermodynamic approach the initial power
the mother phase metastability has to be relatively sm
Together with the Maxwell rule this leads to the followin
final result for the phase transition: Only a relatively sm
part of the system volume is occupied by the new pha
This is not in contradiction with the property that the who
volume is occupied by ER’s. The final state of the system
an essentially saturated mother phase and a small vol
~distributed over the whole system! occupied by a new
phase. As a result one can see that the process of subs
consumption~extraction! leads to saturation in a volum
relatively large in comparison with the volume of the ne
embryo phase. The mother phase cannot be undersatu
~then the embryos would disappear!. Since even the mothe
phase has to be spread over almost all the volume of
system, the mean distance between two neighboring emb
of the new phase is many times greater than the mean siz
the embryo. Thus one can state that the embryo produce
effective perturbation over relatively large distances in co
parison with the size of the embryo. To have an interrupt
~a relative interruption in comparison with the ideal nuc
ation rate! of the new phase formation, one needs a ve
small reduction of the power of metastability.31 This reduc-
tion can be attained only at distances which are very larg
comparison with the embryo linear size.32 Thus one can use
the point source approximation as was done in the first p
of this paper and forget about the boundary movement.33 The
negligible character of the boundary movement is n
proved for all possible systems.

The heat extraction and account of all other intensive
rameters of the description can be performed as in@6#.

as
.

31The relative reduction has to beG21 whereG@1 is the scale of
the number of molecules in the critical embryo.

32Because the profile is sharper than in the stationary solution
33The effect of the boundary movement on the embryo grow

rate is taken into account as an external parameter.

FIG. 12. Relative error of the quasihomogeneous approac
the universal simulation.

in
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